We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
The following short articles first appeared on www.powertransmission.com. They are
part of the ongoing series of hints, technical tidbits and inside knowledge presented by our resident blogger, Norm Parker. If you like what you see here and are interested in learning more, visit www.powertransmission.com/blog.
At Hannover Messe, Power
Transmission Engineering
had the opportunity to sit
down with Stefan Hantke,
president of
the Industrial
North America
division
of Schaeffler
USA, to discuss
the current
stateof-
the-art
in bearings
manufacturing,
the trends in industrial
bearings and the current state of U.S. manufacturing.
(In the meantime Stefan Hantke has taken over responsibility for the global sales activities of Schaeffler
Industrial)
Machine and equipment manufacturers
today are feeling more pressure
than ever to reduce costs without sacrificing
machine performance — a balancing
act difficult to achieve. OEMs often overlook a simple solution that can have a positive, long-term impact
on profitability for themselves and
their customers, i.e. — the elimination of bearing lubricant.
Spiroid and worm gears have superior advantages for hightorque and miniaturization applications. And for this reason they are particularly preferred in aerospace, robotic and medical applications. They are typically manufactured by hobbing technology, a process with a typical overall lead time of 4 to 14 weeks.
A four-point contact ball bearing makes it easy to simplify
machine designs that combine radial, thrust and moment
loads, because it can handle all three simultaneously. They
are primarily used for slow-to-moderate-speed applications,
or where oscillatory movement is predominant.
Engineers typically learn that the bearing L10 life can be estimated using the so called “C/P method” — or the “basic rating life” of
the bearing, a method rooted in the 1940s. Major developments have since led to the “modified rating life,” released in ISO 281:2007,
which includes the aiso life modification factor. In this paper a succession of equations used for bearing life ratings are reviewed, and
current bearing life rating practices are discussed in detail. It is shown that — despite the introduction more than 30 years ago of
the adjustment factor of the basic rating life, and the standardization in 2007 of the aiso modification factor — use of these improved
calculation methods are not practiced by all engineers. Indeed — many continue referring to the old model as a way of seeking
compliance with existing, established practices.