Ball Bearing Efficiency
I would like to briefly discuss some thoughts on ball bearing efficiency specifically in terms of applied load and resulting stress. I don’t want to trivialize this subject; there are textbooks written on the subjects of electrohydrodynamic lubrication (EHL), octahedral subsurface shear stress and friction losses due to elastic hysteresis. This is a just a high-level discussion on the importance of individual bearing stress on efficiency.
Why is this important? On some level, I feel like I have, at times, personally concentrated too much on the size of the bearing regarding efficiency. I was trained in the traditional bearing houses with the notion that smaller was always better in terms of efficiency; however, this is not always the case. One of the major sources of energy losses for roller bearings is elastic deformation of the raceway under the loaded rollers. This might also be described as elastic hysteresis: It is the microscopic wave that is generated in front of rolling elements as they pass through the load zone. The higher the load on the individual roller, the larger the loss.
Figure 1—Shear Force Diagram
As you begin to visualize these losses, you may start to wonder if using a smaller premium bearing is truly more efficient than a larger non-premium bearing, considering the individual roller stress will be smaller on a larger bearing.
Of course, there are many factors to consider with a larger bearing that need to be included such as mass, cost, packaging space, transportation costs, ease of installation, etc. but for the purpose of this example, let’s just discuss size vs. efficiency and leave the rest for another day.