Reference 3 describes the analysis and identification of such grid disturbances and their influence on bearing loads in a WEP. In many cases it is impractical if not impossible to switch generators off during incidents or faults in the electrical grid; official guidelines and standards define permissible grid fluctuations and voltage drops for electrical power customers and suppliers (e.g., EN50160).
When designing the mechanical system, it is important to analyze the influences of grid disturbances such as symmetric or asymmetric short circuits and the corresponding voltage drops. Figure 4 shows the model of the drive of a machine with a geared motor. There are two gear pairs between machine and load. The machine drives a speed-dependent load. Each gear pair meshing element represents a constant mean gear meshing spring stiffness and its rotating backlash.
Figure 4 Model of an electric-driven work machine in
SimulationX.
During steady-state operation at 116 rpm load speed a (3-pole) short circuit occurs between 10 and 10.1 s; high peaks of the tooth contact forces can be seen in Figure 5. The maximum values are up to 4 times higher than the mean load.
Figure 5 Top — supply voltage with short circuit breakdown; Middle, Bottom — tooth contact normal forces of gear 1 and gear 2 each for both flanks.
This example shows how important it is to consider realistic interactions with other (e.g., electrical) systems using physical models when designing the mechanical system. In contrast, generic assumptions tend to result in over-dimensioned systems.
Temperature Analyses of Gearsets
The system shown in the model (Fig. 4) is cooled by an oil cooling system for which another task must be solved, i.e. — what happens when the cooling system drops out, and how much time do we have to stop the system automatically to avoid oil flaming or teeth damage as a result of overheating?
Figure 6 shows the detail of an extended model of the work machine drive. It contains a hydraulic and pneumatic model of the oil cooling circuit as well as a thermal model to represent the heat transfer from the gear pair meshings to the cooling oil. For these kinds of long-term analyses it is quite accurate to work with mean gear mesh stiffnesses and only low-frequency excitations. We assume a gear meshing efficiency of 95%.
Figure 6 Model of a machine with detailed sub-models of gear oil exchange and heat transfer from teeth to oil in
SimulationX.
Figure 7 shows the main results of the simulation: during normal steady-state operation the oil sump temperature is approx. 95°C. At 5 minutes the oil cooling system is disrupted and the oil temperature quickly increases. After approximately 80 seconds the limit temperature of the oil is reached. Beyond this point we can expect damage to the gears or the gearbox because of decreasing viscosity and loss of lubrication of the oil film between the teeth contacts. Furthermore, after 2.5 minutes the oil’s flashpoint is reached.
Figure 7 Model of a work machine with detailed sub-models of gear oil exchange and heat transfer from teeth to oil in
SimulationX.
Based on these results we can design a control system that shuts down the machine automatically (in this case within approx. 60 seconds) to avoid damage. It is indeed possible to test such an emergency shutdown on a virtual system.
Outlook — WindTwin Project: New Ways of Monitoring the Maintenance Condition of Wind Turbines Using Virtual Plants
Research has shown that preventive maintenance of wind turbines costs 25% less than reactive maintenance, and that predictive maintenance costs 47% less. Also, there is a need to increase wind turbine reliability to 99.5% (Ref. 3), which can be achieved by developing new data analytics techniques, processing, and visualization for effective operations and maintenance.
The upcoming WindTwin project aims to revolutionize the monitoring and maintenance of wind turbines — both onshore and offshore — by developing an innovative digital platform that will virtualize the WPP (wind power plant) using a digital twin of the wind turbine behavior and operation. These virtual plants — or hybrid twins — will combine the mathematical models describing the physics of the turbine’s operation with sensor data collected and processed from real assets during real-world operations. For example, condition monitoring will be applied on the gearbox, and sensors will be placed on the real wind turbine asset; the data being collected will be processed and transferred to the hybrid twin, continuously resulting in a close to real digital twin of the wind turbine showing real-time performance. These virtual models will allow wind farm operators to predict failure and plan maintenance — thus reducing both maintenance costs and downtime.
Summary
- The holistic system simulation of gearboxes in every field of application helps us to analyze and understand the complete system behavior.
- Several examples demonstrate that it is important to take physical interactions from different sub-systems into account, e.g. — mechanics, electronics, thermal, hydraulics and control.
- All experiments (modeling, result analysis, etc.) were done completely in SimulationX.
- Intuitive, application-oriented model libraries for representing all sorts of systems make it possible to quickly create and parameterize system simulation models. Options in the component models enable switching between various degrees of calculation detail according to what type of analysis task needs to be done.
- Furthermore, the object-oriented modeling language Modelica enables the modeler to extend existing library elements or create new library elements based on new requirements. (Note: the paper cited in Reference 5 summarizes the advantages of modeling using Modelica in comparison to other technologies.)
- Also possible is the coupling or integration of sub-models from other simulation platforms via the functional mock-up interface (FMI). This technology also makes it possible to integrate SimulationX models into other environments.
- Thus system simulation is the most important tool in the layout, improvement and analysis of systems, and a decisive part of CAE (computer-aided engineering) development process of machines with gearboxes.
References
- Schreiber, U. and S. Grützner. “Planetengetriebe mit veränderlicher Steifigkeit im Zahneingriff— Modellierung und Mehrkörpersimulation am Beispiel von Automatgetrieben,” Dresdner Maschinenelemente Kolloquium 2005, Dresden: TUD press Verlag der Wissenschaften GmbH 2005.
- Dresig, H. Schwingungen M echanischer Antriebssysteme (Kap 4.7), 2, Auflage, Springer-Verlag Berlin Heidelberg, 2006.
- Noack, R., W. Horn, K. Peter and A. Magdanz. “Dynamische Effekte im Mechanischen Triebstrang von WEA Durch Störungen im Elektrischen Netz,” VDITagung – Schwingungen und Dynamik von Windenergieanlagen, Bremen 2016.
- Grützner, S. and A. Magdanz. “Simulation von Antriebssystemen im Zusammenhang mit Elektromechanisch-Thermischen Wechselwirkungen am Beispiel eines Gurtförderers,” VDI-Newsletter Juni 2017, www.vdi-wissensforum.de/news/simulation-von-antriebssystemen.
- Bahnert, T., A. Haase and S. Chaker. “Analyse und Beherrschung von Getrieberasseln in Leichtbau Antriebseinheiten,” VDI-Tagung– Kupplungen und Kupplungssysteme in Antrieben, Karlsruhe 2017.
This paper was first presented at the International VDI Conference on Gears 2017, Garching/Munich [VDI-Berichte 2294, 2017, VDI Verlag GmbH] and is reprinted here with VDI approval.