We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
I have a fairly straightforward question about a worm gear segment. But as of yet, I haven’t gotten a straight answer from any of the gear job shops I’ve approached about this job. Is there a "traditional" gear cutting method that can produce a ~180
degree enveloping worm gear segment when a feature on the back of the part will interfere with a complete rotation of the part? Or am I left with only the option of 4- or 5-axis surfacing with a CNC mill? I have presented this part to several well-known gear shops in the U.S. without a straight answer on how the part can be made. Any help you could offer would be appreciated.
In order to analyze the different gear
oils suitable for the lubrication of wind turbine gearboxes, five fully formulated ISO VG 320 gear oils were selected. In between the selected gear oils, four PAO base oils can be found: PAOR, PAOM, PAOC and PAOX. A mineral-based oil (MINR) was also included as reference.
Wind is a form of solar energy.
Winds are caused by the uneven heating
of the atmosphere by the sun, the
irregularities of the earth’s surface, and rotation of the earth. Wind Turbines
convert the kinetic energy in wind into
mechanical power.
Richard (RJ) Seguin, CBS and technical
sales representative at AMI Bearings,
explains how his bearing expertise tripled
the life of a customer’s bearings.
End users and OEMs frequently specify
"lubed-for-life" mounted bearings, thinking the lubed-for-life bearings will deliver the same life — without lubrication — as bearings that
currently require periodic lubrication. The truth is it depends on many factors, and only a detailed review of the application and testing will provide a more accurate answer.
For a 5-megawatt wind turbine prototype,
aerodyn employs the latest control and software technologies, including a comprehensive PC-based control solution and the new modular TwinCAT Wind Framework. The TwinCAT Wind Framework features the latest software engineering and Big Data applications to extend current Industry 4.0 concepts to the wind energy industry. The modular software supports, for example, the direct provision of sensor data to the operator’s database, and in general enables the easy adaption of the wind turbine operation management to future requirements.