To the Moon and Beyond with Additive Manufacturing
Aerojet Rocketdyne uses metal 3D printing technology from Velo3D to make a critical flight component lighter, smaller, and much less expensive than its predecessors
On the afternoon of December 19, 1972, Apollo 17’s command and service module CSM-114 “America” splashed down in the Pacific Ocean, bringing its crew and cargo safely home. The event marked the end of NASA’s eleven-year lunar program and humankind’s final visit to the Moon. Thanks in part to Los Angeles, Calif.-based Aerojet Rocketdyne — a manufacturer with a proud heritage in spaceflight and rocket propulsion — we’ll be going back soon, this time to stay.
Meet Apollo’s Sister
In Greek mythology, Apollo was one of the twelve Olympians, gods of the sea, sun, and sky. It’s therefore only fitting that NASA has named its next lunar expedition after the deity’s twin sister and goddess of the Moon, Artemis. And while those many Apollo missions were hugely successful and crucial to the continuation of the United States space program, Artemis’ goals are much more ambitious.
Beginning in 2022, NASA will place unmanned Orion spacecraft into lunar orbit, followed by crewed landings, construction of lunar habitats and supporting infrastructure, and ultimately, preparation for a visit to Mars. According to NASA administrator Jim Bridenstine, the space agency and its partners will accomplish this by the end of this decade and do so with half the buying power it had back in 1964, when Apollo development was at its peak.
One of the technologies that enables such ambitious plans? Additive manufacturing (AM), better known as 3D printing. “As with any complex endeavor, the more affordable you can make it, the greater the chance that you will ensure its completion, and the moon is no different,” said James Horton, aerospace engineer and mission architect at Aerojet Rocketdyne. “Metal AM plays a key role in achieving these goals.”
Building on a Legacy