The Importance of Thermal Protection for Torque Motors
The Importance of Thermal Protection for Torque Motors
Brian Zlotorzycki
When talking about high-end machining or manufacturing applications that include direct-drive technology, one of the key advantages of utilizing this particular transmission method is its endurance. Because of the very nature of direct-drive motors they are able to operate at peak performance levels indefinitely — without any kind of wear or aging — as long as the motor isn’t pushed past its capacity. Unfortunately, because this isn’t a perfect world, unexpected things can happen which can cause the motor to overheat. Whether the heat source is due to a parameter being input incorrectly, or an unexpected external force causing more resistance than expected — it is important to have certain forms of thermal protection in place. Since torque motors are built in such a way that they cannot be repaired and yet maintain their efficiency, it is vital to prevent any overheating — thus precluding the need to purchase a new one.
There are currently a number of ways in which torque motors can be protected from overheating; they include having the controls monitor and maintain a certain amount of current, or using physical temperature sensors. Following are some of the methods possible to ensure optimum motor protection.
I2t values. Within controls, the algorithms that monitor the current being used are referred to as an I2t value. There are variations on how it is calculated depending on whose programs are used, but the principle is always the same. I2t is an algorithm that is a function of time and current, so it uses the amount input into the motor over time and sets a limit on how much can be applied before overheating. To give an example of this, we’ll take a look at the I2t programming in Etel’s AccurET control driver (Fig. 1).

Figure 1 A value of KF84 is set, which is dependent on the model of the motor. If the current
reaches its limit of KF85 — an I2T error occurs.
- Click image to enlarge
A value of KF84 is set, as determined by the model of the motor. As the amount of current used goes above and below this value, integration begins. If the current remains above the selected KF84 value for too long, and the integral reaches its limit of KF85, then an I2t error occurs. There is also an over-current limit at KF83 that sets a limit — regardless of any integration value.