We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
Until now the estimation of rolling bearing life has been based on engineering models that consider an
equivalent stress, originated beneath the contact surface, that is applied to the stressed volume of the
rolling contact. Through the years, fatigue surface–originated failures, resulting from reduced lubrication or
contamination, have been incorporated into the estimation of the bearing life by applying a penalty to the
overall equivalent stress of the rolling contact. Due to this simplification, the accounting of some specific
failure modes originated directly at the surface of the rolling contact can be challenging. In the present
article, this issue is addressed by developing a general approach for rolling contact life in which the surfaceoriginated
damage is explicitly formulated into the basic fatigue equations of the rolling contact. This is
achieved by introducing a function to describe surface-originated failures and coupling it with the traditional,
subsurface-originated fatigue risk of the rolling contact. The article presents the fundamental theory of the
new model and its general behavior. The ability of the present general method to provide an account for
the surface–subsurface competing fatigue mechanisms taking place in rolling bearings is discussed with
reference to endurance testing data.
Ernest Head (Arnie), CBS and technical
sales representative at Motion Canada
helped save a lumber industry customer
time and money by adapting a bearing
solution for another client. Here’s how:
Slow speed operation of fan systems within the air handling
industry is generally performed due to two reasons: a coast
down operation is required for hot (induced draft) fans to
cool down before shutdown (often by using a turning gear),
and operational efficiency improvements can be achieved
during non-peak periods by slow speed operation using a
VFD. In either case, when these fans are supported by hydrodynamic
bearings, it is the oil film thickness developed from
the bearing-shaft interaction that limits the minimum speed
that can be maintained without causing premature wear and
bearing failure. This paper will present a brief overview of
lubrication theory and critical design parameters to achieve
slow speed operation.
Rolling-element bearings are high-precision components that need to be stored and handled carefully to perform as designed. Proper storage and
handling of a bearing before, during
and after installation is important because once debris enters a bearing, it
reduces the life.
Experienced operators can often
tell if a machine is not working
properly, on the basis that it does
not ‘sound right.’ The same principle can be applied — using modern electronics — to identify the exact cause of the problem.
Sensitive accelerometers can detect and analyze the vibrations from industrial equipment, highlighting problems such as misalignment
or bearing imbalance. The technique
is known as vibration analysis. It can
identify bearing failure in the very early stages, when there is a microscopic defect on the raceway, for example. The problem is that the
identifying signal is usually drowned out in all the other noise emanating from the machine.
Wind is a form of solar energy.
Winds are caused by the uneven heating
of the atmosphere by the sun, the
irregularities of the earth’s surface, and rotation of the earth. Wind Turbines
convert the kinetic energy in wind into
mechanical power.
Richard (RJ) Seguin, CBS and technical
sales representative at AMI Bearings,
explains how his bearing expertise tripled
the life of a customer’s bearings.