We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
Engineers typically learn that the bearing L10 life can be estimated using the so called “C/P method” — or the “basic rating life” of
the bearing, a method rooted in the 1940s. Major developments have since led to the “modified rating life,” released in ISO 281:2007,
which includes the aiso life modification factor. In this paper a succession of equations used for bearing life ratings are reviewed, and
current bearing life rating practices are discussed in detail. It is shown that — despite the introduction more than 30 years ago of
the adjustment factor of the basic rating life, and the standardization in 2007 of the aiso modification factor — use of these improved
calculation methods are not practiced by all engineers. Indeed — many continue referring to the old model as a way of seeking
compliance with existing, established practices.
In most applications, gearbox reliability is critical to the productivity of the overall plant operation. So it follows that when industry is looking at the best ways to increase efficiency, reduce downtime, and increase profitability, gearbox performance and reliability are key factors. Designing for repair, and writing effective repair procedures, can speed the service time, and provide a quality refurbishment. The best practices listed in this article are proven, effective methods used to install and remove bearings, seals, gears, couplings and shafts within a gearbox.
Dave Soma, the mechanical supervisor at Leland Olds Station, a coal-fired power
plant near Stanton, North Dakota, says he and his maintenance team care deeply
about keeping the plant running and providing people electricity, especially in the dead of winter.
The availability of high-strength shaft materials, in combination with bearings with high carrying capacity, allows use of slimmer shafts. However, the modulus of elasticity remains the same, so seat
design for bearings and gears must be given close attention.
Th e signing of a contract for more than 5,000 sets of SKF’s latest high-capacity cylindrical roller bearings (HCCRB) for wind turbines will impart added load-carrying capacity, more
reliability and longer life to the Nanjing Gear Company’s (NGC) line of gearboxes for wind generation applications.