It's no secret that cycloidal gearboxes are important in mechanical engineering, especially when it comes to precision motion control and efficient power transmission. The gear systems differ from harmonic wave/strain wave gearboxes by using a cycloidal disk and needle bearings to transmit torque with minimum backlash, achieve high reduction ratios, and support substantial loads. This Sumitomo Drive Technologies blog will talk about single-stage and multi-stage cycloidal gearboxes.
Single-Stage Cycloidal Gearboxes
Single-stage cycloidal gearboxes are compact, high-precision devices designed for applications requiring efficient torque transmission and minimal to zero backlash. These gearboxes operate on the principle of a cycloidal disc rotating eccentrically, engaging with pins or rollers to convert input shaft rotation into a slowed output motion.
Design and Operation
Mechanism: At the heart of a single-stage cycloidal gearbox is a cycloidal disc that rotates around an eccentric bearing, engaging with stationary pins on the gearbox housing through rollers. This unique mechanism allows for the efficient transmission of torque with a high reduction ratio in a single stage.
Components: Key components include the cycloidal disc, eccentric cam, needle bearings (or rollers), and the output shaft. The compact arrangement of these components contributes to the gearbox's high load-bearing capacity and robustness.
Learn more here:
https://us.sumitomodrive.com/en-us/cycloidal-gearboxes-types-single-multi-stage