NSK Bearings in Electric Motors
As the development of more efficient electric motors continues to keep pace with upcoming regulations, it is important to ensure that all the components are engineered to the latest specifications, including the bearings. Tony Synnott, UK Engineering Manager for NSK Europe, explains how bearing design is affecting electric motor performance and reliability.
Bearings in electric motors are designed to support the rotor and maintain a consistent air gap between the rotor and the stator as well as transferring the loads from the shaft to the motor frame. Selecting the correct bearing design ensures the design efficiency of the motor is maintained with minimal friction and power losses.
For a small electric motor, a bearing failure and any subsequent damage can put it beyond economical repair, so it is desirable to install high quality bearings that are designed to withstand the stresses of the environment. In larger applications, a bearing failure can cause considerable down-time, so matching the design to the application is crucial.
For example, if a motor designed for an in-line drive application is reassigned to a radial, belt-drive application, the bearings are likely to be compromised and not perform as might be expected. In the original, specified application, the motor would be fitted with deep-groove ball bearings but these could be overloaded by the increased radial load from the drive belt.
In terms of bearing design itself, there has been considerable innovation in terms of bearing materials technology as well as precision engineering and manufacturing processes. By improving the surface finish of the rolling elements and raceways within a bearing, the friction levels are reduced, which reduces energy consumption and noise. When these improvements are combined with the advances in lubrication, the result is a much improved operating life.
One such example is the latest AC traction motors that are being used in the current generation of high speed trains, which are now expected to go faster and travel much further between maintenance periods. The bearings employed in these motors are expected to deliver exceptional performance under severe operating conditions, including high radial loads, high impact loads and high speeds.
