We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
A thermo-mechanical model of a splash lubricated one-stage gear unit is presented. This system corresponds to a first step towards the design of a hybrid vehicle gearbox that can operate up to 40,000 rpm on its primary shaft. The numerical model is based on the thermal network method and takes into account power losses due to teeth friction, rolling-elements bearings and oil churning. Some calculations underline that oil churning causes a high amount of power loss. A simple method to reduce this source of power losses is presented, and its influence on the gear unit efficiency and its thermal capacity is computed.
In this paper, the influences of various gear parameters on the mesh stiffness are systematically investigated by using the finite element method. The comprehensive analysis shows that contact ratios are the key factors affecting the fluctuation value of mesh stiffness.
This paper presents a physically grounded calculation method to determine the
efficiency of worm gear drives. This computation is based on the Institute of Machine
Elements, Gears, and Transmissions (MEGT) tribological simulation, which can determine the local tooth friction coefficients (Ref. 1). With this knowledge other power losses such
as the bearings, oil churnings and seals power losses can also be calculated.
Behind a thick sheet of unblemished
glass that stretches from wall-to-wall, ceilingto- floor at Delta Gear, just south of a shop lined with ultramodern grinding machines whirring away, is Scott Sakuta’s aquarium.
In recent years the estimation of gearbox power loss is attracting more interest — especially in the wind turbine and automotive gearbox industry — but also in industrial gearboxes where heat dissipation is a consideration as well. As new transmissions concepts are being researched to meet both ecological and commercial demands, a quick and reliable estimation of overall efficiency becomes inevitable in designing the optimal gearbox.