We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
Tooth contact analysis (TCA) is an important tool directed to the determination of contact patterns, contact paths, and transmission errors in gear drives. In this work, a new general approach that is applicable to any kind of gear geometry is proposed.
rotary-type blowers? Examples: for motor KW; RPM; temperature; pressure production; lifetime; etc.
In other words, how do I choose between belts or couplings?
The improvement of the energy efficiency of industrial gear motors and gearboxes is a
common problem for many gear unit manufacturers and end-users. As is typical of other
mechanical components, the radial lip seals used in such units generate friction and heat,
thus contributing to energy losses of mechanical systems. There exist today simulation
tools that are already helping improve the efficiency of mechanical systems — but accurate models for seal frictional losses need to be developed. In this paper SKF presents an engineering model for radial lip seal friction based on a physical approach.
In recent years the estimation of gearbox power loss is attracting more interest — especially in the wind turbine and automotive gearbox industry — but also in industrial gearboxes where heat dissipation is a consideration as well. As new transmissions concepts are being researched to meet both ecological and commercial demands, a quick and reliable estimation of overall efficiency becomes inevitable in designing the optimal gearbox.
Engineers typically learn that the bearing L10 life can be estimated using the so called “C/P method” — or the “basic rating life” of
the bearing, a method rooted in the 1940s. Major developments have since led to the “modified rating life,” released in ISO 281:2007,
which includes the aiso life modification factor. In this paper a succession of equations used for bearing life ratings are reviewed, and
current bearing life rating practices are discussed in detail. It is shown that — despite the introduction more than 30 years ago of
the adjustment factor of the basic rating life, and the standardization in 2007 of the aiso modification factor — use of these improved
calculation methods are not practiced by all engineers. Indeed — many continue referring to the old model as a way of seeking
compliance with existing, established practices.
Wind turbine gearboxes are subjected to a wide variety of operating conditions, some of which may push the
bearings beyond their limits. Damage may be done to the bearings, resulting in a specific premature failure mode
known as white etching cracks (WEC), sometimes called brittle, short-life, early, abnormal or white structured flaking
(WSF). Measures to make the bearings more robust in these operating conditions are discussed in this article.
The growth of worldwide energy consumption and emerging industrial markets demands an increase of renewable energy shares. The price pressure coming from coal, oil, nuclear and natural gas energy - combined with enormous worldwide production capacities for components of wind
turbines - make wind energy a highly competitive market. The testing and validation of gearboxes within the test rig and the turbine environment attract a strong focus to the needs of the industry. The following contribution sums up the typical process requirements and provides examples for successful system and component verifications based on field measurements.
It's not a show title that rolls off the tongue, but the Industrial Automation North America and MDA NA @IMTS 2014 show nevertheless may well be one to remember.