We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
The new electromagnetic linear brake ROBA-linearstop from Mayr Power Transmission offers a fail-safe system with high holding forces, which can also brake dynamically and provide short switching times.
Varying installation requirements for worm gears, as, for example, when used in modular gear systems, can necessitate grease lubrication - especially when adequate sealing for oil lubrication would be too complex. Such worm gears are being increasingly used in outside applications such as solar power plants and slew drives. While knowledge about the operating conditions is often appropriate, the basic understanding for load capacity and efficiency under grease lubrication is quite poor. Investigations done at FZG and sponsored by FVA/AiF are shown here to give an impression of the basic factors of load capacity and efficiency. The results of the investigation indicate a satisfying quality of calculations on heat, load capacity and efficiency based on characteristic parameters of the base oil with only slight modifications to the methodology known from DIN 3996 or ISO TR 14521.
Beginning with a brief summary and update of the latest advances in the calculation methods for worm gears, the author then presents the detailed approach to worm gear geometry found in the revised ISO TR 10828. With that information, and by presenting examples, these new methods are explained, as are their possibilities for addressing the geometrical particularities of worm gears and their impact upon the behavior and load capacity of a gearset under working conditions based on ISO TR 14521 — Methods B and C. The author also highlights the new possibilities offered on that basis for the further evolution of load capacity calculation of a worm gearset based on load and contact pressure distribution.