We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
The performance of high-speed helical geartrains is of particular importance for tiltrotor aircraft drive systems.
These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High-Speed Helical Geartrain Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double-helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp).
Also two lubrication, system-related, variables were tested: oil inlet temperature (160–250° F) and lubricating jet pressure (60–80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling-off temperatures
(radially and axially). Also, all gear systems were tested with and without shrouds around the gears.
The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection.
The first space shuttle flight was that of the Space Shuttle Columbia
(OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch.