We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
Three-dimensional finite element analysis (FEA) simulation and research from published information is used to compare the features of various coil configurations.
These versatile, low-cost and high-torque motors may be used open loop or as full servos - and several levels in between. The motor stator laminate designs divide these motors into those optimized for full stepping, and those optimized for micro stepping and servo operation. These differences can be easily measured with basic meters and oscilloscopes. Motor to motor variations can also be easily measured, and motor inductance at nominal speed and current can also be determined.
In this century’s complex, ever-
changing world of manufacturing,
such capabilities as hardware and software expertise, effective location and distribution, business savvy and
yes, even luck, are some of the
cardinal requirements for running
a successful business.
This article presents the first kW-Class, 3-phase GaN-based inverter. Hard-switched at 100-kHz PWM, its heart is a 6-in-1 power module with 600-V GaN power HEMTs, achieving a new efficiency of 98.5%, a more than 2% improvement.
The use of motor structures which can concentrate magnetic flux allows ferrite PM motors to achieve performance and power densities that approach those of PM motors using rare earth magnets, but without the cost penalties and supply source concerns of rare earth magnets.
One of the driving forces behind the industrial revolution was the invention—more than a century ago—of the electric motor. Its widespread use for all kinds of mechanical motion has made life simpler and has ultimately aided the advancement of humankind.
And the advent of the inverter that facilitated speed and torque control of AC motors has propelled the use of electric motors to new realms that were inconceivable just a mere 30 years ago. Advances in power semiconductors—along with digital controls—have enabled realization of motor drives that are robust and can control position and speed to a high degree of precision. The use of AC motor drives has also resulted in energy savings and improved system efficiency. This paper reviews the development and application of inverter technology to AC motor drives and presents a vision for motor drive technology.
This paper describes the development of an educational program centered on electric motor and electric vehicle
technology at the MIT (Massachusetts
Institute of Technology) Edgerton Center.