We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
One of the largest components manufactured
by Schaeffler last year was a double-row tapered roller bearing featuring an outer diameter measuring 3.6 meters and a weight just over nine tons.
The proof of the reliability of a gear drive is now an additional requirement. In Europe, the acceptance authorities for wind turbines are requesting a system reliability proof from gearbox manufacturers. The AGMA committee reviewing the AGMA 6006 standard for wind turbines is considering adding a chapter about design for reliability. However, reliability considerations are not new; NASA, for example, was in the 1980s using reliability concepts for gear drives.
Wind is a form of solar energy.
Winds are caused by the uneven heating
of the atmosphere by the sun, the
irregularities of the earth’s surface, and rotation of the earth. Wind Turbines
convert the kinetic energy in wind into
mechanical power.
For a 5-megawatt wind turbine prototype,
aerodyn employs the latest control and software technologies, including a comprehensive PC-based control solution and the new modular TwinCAT Wind Framework. The TwinCAT Wind Framework features the latest software engineering and Big Data applications to extend current Industry 4.0 concepts to the wind energy industry. The modular software supports, for example, the direct provision of sensor data to the operator’s database, and in general enables the easy adaption of the wind turbine operation management to future requirements.
The Department of Energy estimates that 4 million megawatts of potential
power—four times the amount all U.S. power plants combined currently produce—exists in offshore wind energy. Construction of America’s first offshore wind turbines began in July. The wind farm, which is being constructed off the coast of Block Island, RI, will consist of five turbines. Together, they will produce 30 MW.
After a sluggish 2013, annual installations of new wind turbines grew by 44% in 2014, according to the Global Wind Energy Council. And while much of that growth has been in Asia— particularly China, which now leads the world with 114 GW of installed capacity—the USA, Europe, and the rest of the world expect steady growth for the next couple of years as well (Fig. 1).
A critical problem for wind turbine gearboxes is failure of rolling element bearings where axial cracks form on the inner rings. This article presents field experience from operating wind turbines that compares the performance of through-hardened and carburized materials. It reveals that through-hardened bearings develop WEA/WECs and fail with axial cracks, whereas carburized bearings do not. The field experience further shows that a carburized bearing with a core having low carbon content, high nickel content, greater compressive residual stresses, and a higher amount of retained austenite provides higher fracture resistance and makes carburized bearings more durable than through-hardened bearings in the wind turbine environment.