We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
The load carrying capacity of spur gears may be calculated by ISO 6336 using influence factors. The face load factor considers the impact of the non-uniform load distribution over the face width. Even if the gears had perfect geometry, the load would not distribute uniformly along the contact lines. The face load factor depends on deformations of all parts of the containing gearbox and mainly of the teeth, gears and shafts as well as on manufacturing and assembly deviations.
The performance of high-speed helical geartrains is of particular importance for tiltrotor aircraft drive systems.
These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High-Speed Helical Geartrain Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double-helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp).
Also two lubrication, system-related, variables were tested: oil inlet temperature (160–250° F) and lubricating jet pressure (60–80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling-off temperatures
(radially and axially). Also, all gear systems were tested with and without shrouds around the gears.
In this paper, the influences of various gear parameters on the mesh stiffness are systematically investigated by using the finite element method. The comprehensive analysis shows that contact ratios are the key factors affecting the fluctuation value of mesh stiffness.