We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
American Bearing Manufacturers Association (ABMA) Standard 9 and ISO 281 give equations for calculating
the basic dynamic radial load rating for ball bearings. These equations are based on a number of assumptions, many
of which are not valid for thin-section bearings. (Thin-section bearings are described in ABMA standard 26.2.)
Nevertheless, many thin-section bearing catalogs report load ratings based on these equations. Kaydon has developed a new method for calculating the dynamic radial load rating for thin-section ball bearings. The new method uses the contact stress and the number of stress-cycles-per-revolution to calculate the capacity. The new numbers are based on five years of actual test results. These equations can also be used to calculate the dynamic radial load rating for four-point contact ball bearings, which are not covered in ABMA standard 9 or ISO 281.
Suggesting a bicycle is environmentally
friendly is stating the obvious. But
the Copenhagen Wheel, unveiled at the
2009 COP15 United Nations Climate
Conference, is taking green technology
and cycling in a new direction.
Despite posting its slowest quarter
since early 2007, AWEA remains
optimistic that the wind industry can
and will work successfully with the
revolving doors in Washington.
One of the driving forces behind the industrial revolution was the invention—more than a century ago—of the electric motor. Its widespread use for all kinds of mechanical motion has made life simpler and has ultimately aided the advancement of humankind.
And the advent of the inverter that facilitated speed and torque control of AC motors has propelled the use of electric motors to new realms that were inconceivable just a mere 30 years ago. Advances in power semiconductors—along with digital controls—have enabled realization of motor drives that are robust and can control position and speed to a high degree of precision. The use of AC motor drives has also resulted in energy savings and improved system efficiency. This paper reviews the development and application of inverter technology to AC motor drives and presents a vision for motor drive technology.
The latest offering by machine design experts J.R. Hendershot and T.J.E. Miller is an 822-page brushless permanent-magnet (PM) machine design book that serves as a worthy follow-up to their 1994 work.