We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Privacy Policy.
As gear efficiency is improved in small steps, it is important to be able to distinguish actual improvements from scatter that can occur while testing. An FZG back-to-back gear test rig was used
to investigate how the assembly and re-assembly of the same test setup affects the measurements. A spread in torque loss between one assembly and another of the same test setup were observed. Rig conditions also affected the spread in input torque. With knowledge of how the spread in torque loss varies due to assembly, test results could be distinguished between changes due to assembly and
actual differences between tests.
A thermo-mechanical model of a splash lubricated one-stage gear unit is presented. This system corresponds to a first step towards the design of a hybrid vehicle gearbox that can operate up to 40,000 rpm on its primary shaft. The numerical model is based on the thermal network method and takes into account power losses due to teeth friction, rolling-elements bearings and oil churning. Some calculations underline that oil churning causes a high amount of power loss. A simple method to reduce this source of power losses is presented, and its influence on the gear unit efficiency and its thermal capacity is computed.
Tooth contact analysis (TCA) is an important tool directed to the determination of contact patterns, contact paths, and transmission errors in gear drives. In this work, a new general approach that is applicable to any kind of gear geometry is proposed.
The improvement of the energy efficiency of industrial gear motors and gearboxes is a
common problem for many gear unit manufacturers and end-users. As is typical of other
mechanical components, the radial lip seals used in such units generate friction and heat,
thus contributing to energy losses of mechanical systems. There exist today simulation
tools that are already helping improve the efficiency of mechanical systems — but accurate models for seal frictional losses need to be developed. In this paper SKF presents an engineering model for radial lip seal friction based on a physical approach.
In recent years the estimation of gearbox power loss is attracting more interest — especially in the wind turbine and automotive gearbox industry — but also in industrial gearboxes where heat dissipation is a consideration as well. As new transmissions concepts are being researched to meet both ecological and commercial demands, a quick and reliable estimation of overall efficiency becomes inevitable in designing the optimal gearbox.
Gear drives deliver power to industrial
equipment such as bulk material
conveyors, mixers, pumps and paper
mills. The reliability that translates into greater uptime and profitability begins by specifying and selecting the proper drives for these critical applications.
Even when the critical components of industrial power transmission gear drive systems are properly designed, specified
and manufactured consistent with application requirements, performance
problems can develop over time and failure may follow.
In this special news section, the editors of Power Transmission Engineering have gathered the latest product news
and information from the gears and gear drives sector.